翻訳と辞書
Words near each other
・ Discreet Music
・ DiscReet Records
・ Discreetly Mine
・ Discreliotia
・ Discreliotia radians
・ Discreliotia serrata
・ Discrepancy
・ Discrepancy function
・ Discrepancy of hypergraphs
・ Discrepancy theory
・ Discrepin
・ Discrete
・ Discrete and Computational Geometry
・ Discrete Applied Mathematics
・ Discrete category
Discrete Chebyshev polynomials
・ Discrete Chebyshev transform
・ Discrete choice
・ Discrete circuit
・ Discrete cosine transform
・ Discrete debris accumulation
・ Discrete differential geometry
・ Discrete dipole approximation
・ Discrete dipole approximation codes
・ Discrete element method
・ Discrete emotion theory
・ Discrete event dynamic system
・ Discrete event simulation
・ Discrete exterior calculus
・ Discrete Fourier series


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

Discrete Chebyshev polynomials : ウィキペディア英語版
Discrete Chebyshev polynomials

In mathematics, discrete Chebyshev polynomials, or Gram polynomials, are a type of discrete orthogonal polynomials used in approximation theory, introduced by and rediscovered by .
==Definition==

The polynomials are defined as follows: Let ''f'' be a smooth function defined on the closed interval (), whose values are known explicitly only at points ''x''''k'' := −1 + (2''k'' − 1)/''m,'' where ''k'' and ''m'' are integers and 1 ≤ ''k'' ≤ ''m''. The task is to approximate ''f'' as a polynomial of degree ''n'' < ''m''. Consider a positive semi-definite bilinear form
:\left(g,h\right)_d:=\frac\sum_^,
where ''g'' and ''h'' are continuous on () and let
:\left\|g\right\|_d:=(g,g)^_
be a discrete semi-norm. Let φ''k'' be a family of polynomials orthogonal to each other
:\left( \phi_k, \phi_i\right)_d=0
whenever i is not equal to k. Assume all the polynomials φ''k'' have a positive leading coefficient and they are normalized in such a way that
:\left\|\phi_k\right\|_d=1.
The φ''k'' are called discrete Chebyshev (or Gram) polynomials.

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「Discrete Chebyshev polynomials」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.